Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Math Biol ; 85(2): 17, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-2014119

ABSTRACT

We considered an SIS functional partial differential model cooperated with spatial heterogeneity and lag effect of media impact. The wellposedness including existence and uniqueness of the solution was proved. We defined the basic reproduction number and investigated the threshold dynamics of the model, and discussed the asymptotic behavior and monotonicity of the basic reproduction number associated with the diffusion rate. The local and global Hopf bifurcation at the endemic steady state was investigated theoretically and numerically. There exists numerical cases showing that the larger the number of basic reproduction number, the smaller the final epidemic size. The meaningful conclusion generalizes the previous conclusion of ordinary differential equation.


Subject(s)
Epidemics , Models, Biological , Basic Reproduction Number
2.
Nonlinear Dyn ; 107(3): 2995-3023, 2022.
Article in English | MEDLINE | ID: covidwho-1634663

ABSTRACT

During the outbreak of emerging infectious diseases, media coverage and medical resource play important roles in affecting the disease transmission. To investigate the effects of the saturation of media coverage and limited medical resources, we proposed a mathematical model with extra compartment of media coverage and two nonlinear functions. We theoretically and numerically investigate the dynamics of the proposed model. Given great difficulties caused by high nonlinearity in theoretical analysis, we separately considered subsystems with only nonlinear recovery or with only saturated media impact. For the model with only nonlinear recovery, we theoretically showed that backward bifurcation can occur and multiple equilibria may coexist under certain conditions in this case. Numerical simulations reveal the rich dynamic behaviors, including forward-backward bifurcation, Hopf bifurcation, saddle-node bifurcation, homoclinic bifurcation and unstable limit cycle. So the limitation of medical resources induces rich dynamics and causes much difficulties in eliminating the infectious diseases. We then investigated the dynamics of the system with only saturated media impact and concluded that saturated media impact hardly induces the complicated dynamics. Further, we parameterized the proposed model on the basis of the COVID-19 case data in mainland China and data related to news items, and estimated the basic reproduction number to be 2.86. Sensitivity analyses were carried out to quantify the relative importance of parameters in determining the cumulative number of infected individuals at the end of the first month of the outbreak. Combining with numerical analyses, we suggested that providing adequate medical resources and improving media response to infection or individuals' response to mass media may reduce the cumulative number of the infected individuals, which mitigates the transmission dynamics during the early stage of the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL